给水泵是火力发电厂最重要的辅机之一, 其运行的正常与否直接关系到整个电厂能否安全稳定运行。目前, 国外在330MW 以上机组的泵和风机上已普遍应用调速设备, 我国在经过长时间摸索以后, 也在一些大功率的旋转设备上加装调速设备。液力耦合器采用液体传递动力, 以实现调速、隔绝轴系振动。变频器通过对电源频率的改变, 实现电机转速的调节, 进而改变被驱动设备的转速。
1.调速的目的
目前, 我国火力发电厂装机容量正向大容量、高参数方向发展, 对于主要辅机运行可靠性的要求越来越高, 每一个环节的故障都可能导致整个系统的瘫痪。同时, 电厂更加重视成本节约, 调速节能正在成为趋势。调速运行的主要目的包括以下两个方面。
1.1提高系统可靠性及运行的安全性, 改善轴系运行的机械状况, 延长设备使用寿命
以给水泵为例, 一方面电动机需要软启动, 另一方面, 由于机组长期在低负荷模式下运行, 由此导致的管道振动、阀门漏流、阀门磨损、电机线圈温度高等问题十分常见, 而选择把泵降低到合理的转速则可以缓解上述问题, 降低事故率, 进而提高了系统可靠性及运行的安全性。
1.2降低厂用电量, 节约成本
减少厂用电量最根本的办法是选择高效率的泵。只有在得到需要的流量和压头的同时控制转速, 泵的高效率范围随着转速的变化而平移, 才能使水泵一直在较高的效率下运行。
2.不同调速方式的特点
转速调节的方式多种多样, 其中以液力耦合器和变频器最为常见, 液力耦合器几乎已经在所有工业领域广泛应用。变频器在过去几年也取得了不错的应用效果, 尤其是低压变频器(380 V、220 kW 以下) 凭借良好的节能效果和相对成熟的设计, 在工业领域得到了广泛的应用。近年来, 高压变频器在可靠性等方面进行了较大幅度改善, 也日益应用在多个领域。
2. 1液力耦合器的特点
液力耦合器是一种液力传动装置, 主要由壳体、泵轮、涡轮3 个部分组成, 其性能特点如下。
2.1.1能使电机空载启动, 调速范围宽, 可实现从零调节; 没有电气连接, 对环境要求不高。
2.1.2技术成熟, 结构简单, 操作方便; 结构合理,维修方便。
2.1.3价格便宜, 对精度要求低; 本身存在转差(3%左右) , 负载不能达到电机额定转速, 属于有附加转差调速装置; 故障率低, 运行时需加专用的密封冷却系统; 液压油老化后需定时更换。
2.1.4适用于不同等级的高低电压、中大容量电机配用, 功率范围宽。
2. 2高压变频器的特点
变频调速器是将一恒定电压、频率的电源在变频器内部经整流后变成直流, 再经过逆变器转换成频率与电压比值一定,电压、频率连续可调的三相交流电源。高压变频器的性能特点如下。
2.2.1调速范围宽, 可以实现从零转速到工频转速范围内平滑调节, 使电动机实现软启动, 停机时电流冲击极小, 软启动时母线的电压下降较少, 降低了启动电流, 所以可以延长电动机的使用寿命。频率的调整是根据电机在低频下的压频比系数调整电压和频率的输出, 在低转速下, 电机不仅发热量低, 而且输入电压低, 将使电机绝缘老化速度降低。
2.2.2无须升压变换, 降低了装置的损耗, 提高了可靠性, 解决了高压电力变换的困难。
2.2.3性能指标高, 在调速中转差率小, 损耗不增加, 能保持较高的功率因数, 变频器效率达95% 以上, 对电机产生谐波污染较小, 噪声低, 转矩脉动很低, 不会导致电机等机械设备的共振, 同时也减少了传动机构的磨损, 变频器与电机的连接受场地约束较小。
2.2.4高压变频器在发电厂中小功率给水泵电机调速方面已有应用, 但在大功率给水泵电机调速方面尚缺乏足够的应用经验。
2.2.5对供电质量要求高。电压、频率瞬时有较大波动变频器保护就会动作, 恢复后不能马上重新启动变频器, 影响设备继续正常运转。
3.两种调节方式的经济性比较
现以330MW 机组给水泵组为例对变频与液力耦合器两种调速方式进行比较。该机组给水泵原设计为3×70% 额定容量电动给水泵组,配液力耦合器调速。随着变频调速技术的日渐成熟,针对变频调速效率较高的特点, 对1 台电动给水泵配置高压变频器调速方式与1 台电动给水泵配置液力耦合器调速方式进行综合技术经济性比较。
3. 1经济性比较考虑的因素
在进行经济性比较时主要考虑以下因素: 到厂煤价; 机组年利用时间和机组年运行时间; 机组负荷性质; 电厂发电成本; 电厂建设每千瓦投资额; 泵组价格; 泵组运行效率和耗电量; 泵组安装、维护、检修(包括检修设施) 等费用。
3. 2经济性比较的方法和取值
经济性比较采用原电力工业部1982 年2 月颁布的《电力工程经济分析暂行条例》(以下简称《条例》) 中规定的“年费用最小法”。其计算公式如下:
F = Z ?[r (1+ r) n(1+ r) n- 1]+ U
式中: F 为年费用; r 为投资回收率, 取0. 08; n 为工程的经济使用年限, 按《条例》取20 年; Z 为折算到投产年份的设备总价格;U 为折算年运行费。
3. 3设备总价格
设备总价格包括: 设备费(前置泵和给水泵本体、配套设备和电动机)、设备运杂费、设备安装和施工管理费等。对两种调节方式费用差别不大的项目予以忽略。耦合器调速设备总费用为300 万元(公众号:泵管家), 变频调速设备总费用为650 万元,采用液力耦合器调节方式的电动给水泵组设备总价格比采用变频调节方式的电动给水泵组设备总价格低350 万元。
3. 4泵组年耗电量
泵组年耗电量按机组运行负荷模式计算, 根据供热电厂的特点和该热电厂提供的机组运行负荷模式, 按年发电设备运行7 098 h 计算。液力耦合器调节方式年总计耗电量26. 17×106 kW ?h, 年费用610. 92 万元。变频调节方式年总计耗电量22. 47×106 kW ?h, 年费用575. 44 万元。电动给水泵组采用高压变频器调节方式的比采用液力耦合器调节方式全年省电约3. 70 × 106 kW ? h, 年费用降低35. 48 万元。
高压变频器设备中电容为其易损耗件。采用电解电容的高压变频器中电容的使用寿命为7~ 8 年;采用薄膜电容和安规电容的高压变频器中电容使用寿命约为15 年, 其更换费用约为40 万元。国产液力耦合器的主要部件(包括泵轮、涡轮、主驱动变速箱等) 承诺使用寿命为30 年, 其易损件为传动轴承、密封件和油泵。其中轴承和密封件需要3 年更换, 每次更换费用约为2 万元; 油泵的转动部件需要5 年更换, 每次更换费用约为3 000 元。进口液力耦合器承诺使用寿命为30 年, 其中轴承可保证工作10 万h,只需定期更换工作油。所以, 无论采用何种调节方式, 都应在电厂服役期内考虑上述因素。
4结论
经过综合技术经济比较, 电动给水泵如采用高压变频器调节方式比采用液力耦合器调节方式, 用电量少, 年费用低。变频调速是当代最先进、最高效的调速技术。低压变频器在火电厂已得到了广泛应用,在实现自动控制和节能降耗上收到了良好效果,已被社会所公认。高压变频器在火电厂的送、引风机、排粉机、灰渣泵、循环水泵、汽机凝结水泵、母管制给水泵等技术改造、新建、扩建机组中,已经和正在广泛得到应用。高压变频器在电厂的应用,已经和正在得到人们的普遍重视。330MW 机组建议采用高压变频调节方式的给水泵组。但是需要特别指出的一点是, 目前高压变频器在大功率电机调速方面仍有技术欠缺, 而锅炉给水泵是火力发电厂最重要的辅机之一, 其运行的正常与否直接关系到整个电厂能否安全稳定运行, 因而在选择其调速方式时还要根据实际情况。